Pages

Monday, May 8, 2023

The Promise of Data-Driven Decision Making - From Analytics to Visualization and Beyond (new audiobook & ebook)

Colleagues, “The Promise of Data-Driven Decision Makingis a powerful resource that has the potential to transform the way we approach problem-solving in both our personal and professional lives. By collecting and analyzing data, we can gain valuable insights into the world around us, and use that knowledge to make more informed decisions. Throughout this e-book, we have explored the various aspects of data-based decision making, including the benefits, challenges, and best practices. We have also examined the different tools and techniques that can be used to collect and analyze data, as well as the ethical considerations that must be taken into account.

Highly data-driven firms are three times more likely to report a major improvement in decision making, according to a large decision survey conducted by PWC. However, only one in three CEOs claim that their company is heavily data-driven. It comes up frequently in meetings with corporate leaders that executives have instant access to large volumes of data. We also learn that their personal intuition or gut feeling plays a significant role in their decision-making. How might the art and science of decision-making be combined better? A more efficient use of data and the capacity to draw insights are seen to present potential for enterprises to generate higher value. Analytics may support an organization's growth and innovation, increase productivity, and improve risk management when they are integrated into the culture of decision-making within the company. The use of facts, metrics, and data to inform strategic business decisions that are in line with a company's goals, objectives, and activities is known as data-driven decision-making. Interactive dashboards, work management platforms, and OKR tools are examples of modern analytics tools that assist individuals overcome prejudice and make the best management decisions that are in line with business strategies. Instead of making decisions based on intuition, opinion, or personal experience, it compiles historical data to examine trends and make better decisions for the future in relation to what has previously worked.

Listen today via Amazon Audible (https://tinyurl.com/ydbyh2t9


Or read now on Kindle (https://tinyurl.com/hptundzs


This book is part of the “Data-Driven Organizations” series.


Much success, Genesys Digital (share with your team) 


Saturday, May 6, 2023

“Implementing Data Science Methodology” (new ebook & audiobook)

Colleagues, the new ebook entitled “Implementing Data Science Methodology … From Data Wrangling to Data Viz and Everything in Between” will enable you to lead data science initiatives within your organization. They allow organizations to make informed decisions based on data, which can lead to better results and increased competitiveness. Data-driven methodologies also help organizations to identify areas for improvement and to make more accurate predictions about future outcomes and improve the accuracy of decision-making. By analyzing large amounts of data, organizations can identify patterns and trends that would not be apparent otherwise. This allows them to make more informed decisions, reducing the risk of making decisions based on inaccurate or incomplete information. The implementation of data-driven methodologies is critical for organizations looking to remain competitive in today’s data-driven world. By leveraging data to make informed decisions, organizations can improve their performance, reduce risks, and provide better experiences for their customers. It is important for organizations to invest in the resources and processes needed to implement these methodologies effectively, and to stay up-to-date with the latest trends and technologies in data science. Key topics addressed include: 1) Data-Driven Methodologies, 2) The Role of the Data Scientist, 3) Stakeholders and Buy-in, 4) Key Concepts of Data-Driven Methodology, 5) Data-Driven Lifecycle, 6) Data-driven Roadmapping, 6) Planning and Implementing a Data-Driven Strategy, 7) Data-Driven Predictive Modeling, 8) Business Transformation, and 9) Examples of Data-Driven Organizations.

Read this new ebook today on Amazon Kindle: https://www.amazon.com/dp/B0BWVHSM4N 


Access & listen on Amazon Audible: https://tinyurl.com/mt3xs4ys 


This book is part of the Data-Driven Organizations series: https://tinyurl.com/4j49m4zm 


Much success, Genesys Digital (share with your team) 

Wednesday, March 29, 2023

The Promise of Data-Driven Decision Making - From Analytics to Visualization and Beyond (ebook)

Colleagues, “The Promise of Data-Driven Decision Makingis a powerful resource that has the potential to transform the way we approach problem-solving in both our personal and professional lives. By collecting and analyzing data, we can gain valuable insights into the world around us, and use that knowledge to make more informed decisions. Throughout this e-book, we have explored the various aspects of data-based decision making, including the benefits, challenges, and best practices. We have also examined the different tools and techniques that can be used to collect and analyze data, as well as the ethical considerations that must be taken into account.

Highly data-driven firms are three times more likely to report a major improvement in decision making, according to a large decision survey conducted by PWC. However, only one in three CEOs claim that their company is heavily data-driven. It comes up frequently in meetings with corporate leaders that executives have instant access to large volumes of data. We also learn that their personal intuition or gut feeling plays a significant role in their decision-making. How might the art and science of decision-making be combined better? A more efficient use of data and the capacity to draw insights are seen to present potential for enterprises to generate higher value. Analytics may support an organization's growth and innovation, increase productivity, and improve risk management when they are integrated into the culture of decision-making within the company. The use of facts, metrics, and data to inform strategic business decisions that are in line with a company's goals, objectives, and activities is known as data-driven decision-making. Interactive dashboards, work management platforms, and OKR tools are examples of modern analytics tools that assist individuals overcome prejudice and make the best management decisions that are in line with business strategies. Instead of making decisions based on intuition, opinion, or personal experience, it compiles historical data to examine trends and make better decisions for the future in relation to what has previously worked.


Access this new ebook today on Amazon Kindle.


And download your free Data Science - Career Transformation Guide.


Much career success, Lawrence E. Wilson - Artificial Intelligence Academy (share with your team) 


Monday, March 20, 2023

Implementing Data Science Methodology (ebook)

Colleagues, the new ebook entitled “Implementing Data Science Methodology … From Data Wrangling to Data Viz and Everything in Between” will enable you to lead data science initiatives within your organization. They allow organizations to make informed decisions based on data, which can lead to better results and increased competitiveness. Data-driven methodologies also help organizations to identify areas for improvement and to make more accurate predictions about future outcomes and improve the accuracy of decision-making. By analyzing large amounts of data, organizations can identify patterns and trends that would not be apparent otherwise. This allows them to make more informed decisions, reducing the risk of making decisions based on inaccurate or incomplete information. The implementation of data-driven methodologies is critical for organizations looking to remain competitive in today’s data-driven world. By leveraging data to make informed decisions, organizations can improve their performance, reduce risks, and provide better experiences for their customers. It is important for organizations to invest in the resources and processes needed to implement these methodologies effectively, and to stay up-to-date with the latest trends and technologies in data science. Key topics addressed include: 1) Data-Driven Methodologies, 2) The Role of the Data Scientist, 3) Stakeholders and Buy-in, 4) Key Concepts of Data-Driven Methodology, 5) Data-Driven Lifecycle, 6) Data-driven Roadmapping, 6) Planning and Implementing a Data-Driven Strategy, 7) Data-Driven Predictive Modeling, 8) Business Transformation, and 9) Examples of Data-Driven Organizations.

Access this new ebook on the Amazon Kindle today.


And download your free Data Science - Career Transformation Guide.


Much career success, Lawrence E. Wilson - Artificial Intelligence Academy (share with your team) 

AI Software Engineer - ChatGPT, Bard … and Beyond (ebook)

Colleagues, this new ebook “AI Software Engineer - ChatGPT, Bard … and Beyond” aims to help Software Engineers and Developers capture their ideal job offer and manage their medium-to-long-term career growth in the global Artificial Intelligence (AI) arena. First, we will look at the global market overview for AI Globally. The artificial intelligence (AI) market size was valued at around $136.55 billion in 2022 (Grand View Research, 2022). Also, it was projected to have a compound annual growth rate (CAGR) of 37.3% from 2023 to 2030. if you're interested in AI, you should be familiar with and have expertise with at least one of the following programming languages: Python, C/C++, MATLAB. According to Indeed, salaries for artificial intelligence professionals often range from $99,568 for a full-stack developer to $142,318 for a data scientist. Glassdoor reports the annual average base salary for artificial intelligence professionals in the US is $120,048. Based on a Talent.com report, the average artificial intelligence salary is $143,054 annually. Entry positions start at $115,000, and experienced employees can earn up to $200,000 yearly. 

Access this new ebook on the Amazon Kindle today.


And download your free AI-ML-DL - Career Transformation Guide.


Much career success, Lawrence E. Wilson - Artificial Intelligence Academy (share with your team) 

Thursday, March 9, 2023

ChatGPT … ChatGPT, Bard and Beyond

Colleagues, Generative conversational AI has the potential to improve accessibility for people with disabilities and those who struggle with language barriers, as AI models can be trained to understand and respond to a wide range of languages and dialects. Generative conversational AI represents a major shift in how we interact with technology and has the potential to improve many aspects of our lives, from customer service and support to healthcare and accessibility. Check out this new ebook!

ChatGPT is a specific implementation of Generative conversational AI technology developed by OpenAI. It is a large language model trained on vast text data, allowing it to generate human-like responses to text inputs. In the context of conversational AI, ChatGPT can be used to build chatbots, virtual assistants, and other applications that require the ability to generate text in real time. The model's size and training data allow it to develop highly relevant and human-like text, making it well-suited for various applications. As a state-of-the-art Generative conversational AI, ChatGPT is the perfect tool for organizations looking to step up their communication game. Whether you want to improve interactions with customers, employees, or other stakeholders, ChatGPT makes it easy. Want to see just how much you can achieve with this powerful tool? 

Access this new ebook from the Amazon Kindle Store today: https://tinyurl.com/5yfwvh8a 

And download your free AI-ML-DL - Career Transformation Guide.

Much career success, Lawrence E. Wilson - Artificial Intelligence Academy (share with your team)

Monday, January 16, 2023

OpenAI’s ChatGPT - Generative AI for Such a Time As This

Colleagues, according to CNET’s article (December 2023) “There's a new AI bot in town: ChatGPT, and even if you're not into artificial intelligence, you'd better pay attention.” Moreover, “It's a big deal. The tool seems pretty knowledgeable in areas where there's good training data for it to learn from. It's not omniscient or smart enough to replace all humans yet, but it can be creative, and its answers can sound downright authoritative. A few days after its launch, more than a million people were trying out ChatGPT.” ChatGPT can write blog posts, articles and even create computer programs. This chatbot is still in its infancy. However, as ChatGPT scans more Internet content and expands its knowledge base, the applications for consumers and professionals alike appear almost limitless.

With Generative AI’s astounding potential it is time for software developers and engineers to get training and certified. Here are our top 4 training program recommendations for 2023. First is Contact Center AI: Conversational Design Fundamentals you will learn to design customer conversational solutions using Contact Center Artificial Intelligence (CCAI). You will be introduced to CCAI and its three pillars (Dialogflow, Agent Assist, and Insights), and the concepts behind conversational experiences and how the study of them influences the design of your virtual agent. After taking this course you will be prepared to take your virtual agent design to the next level of intelligent conversation. This is a beginner course, intended for learners with the following types of roles: Conversational designers: Designs the user experience of a virtual assistant. Translates the brand's business requirements into natural dialog flows. Citizen developers: Creates new business applications for consumption by others using high level development and runtime environments. Software developers: Codes computer software in a programming language (e.g., C++, Python, Javascript) and often using an SDK/API. Operations specialists: Monitors system operations and troubleshoots problems. Installs, supports, and maintains network and system tools. Second is Build Basic Generative Adversarial Networks (GANs). Understand the intuition behind the fundamental components of GANs - Explore and implement multiple GAN architectures - Build conditional GANs capable of generating examples from determined categories Build a comprehensive knowledge base and gain hands-on experience in GANs. Train your own model using PyTorch, use it to create images, and evaluate a variety of advanced GANs. This Specialization provides an accessible pathway for all levels of learners looking to break into the GANs space or apply GANs to their own projects, even without prior familiarity with advanced math and machine learning research. Next is Machine Vision, GANs, and Deep Reinforcement Learning. Modern machine vision involves automated systems outperforming humans on image recognition, object detection, and image segmentation tasks. Generative Adversarial Networks cast two Deep Learning networks against each other in a “forger-detective” relationship, enabling the fabrication of stunning, photorealistic images with flexible, user-specifiable elements. Deep Reinforcement Learning has produced equally surprising advances, including the bulk of the most widely-publicized “artificial intelligence” breakthroughs. Deep RL involves training an “agent” to become adept in given “environments,” enabling algorithms to meet or surpass human-level performance on a diverse range of complex challenges, including Atari video games, the board game Go, and subtle hand-manipulation tasks. Throughout these lessons, essential theory is brought to life with intuitive explanations and interactive, hands-on Jupyter notebook demos. Examples feature Python and straightforward Keras layers in TensorFlow 2, the most popular Deep Learning library. And fourth, Apply Generative Adversarial Networks (GANs). Explore the applications of GANs and examine them wrt data augmentation, privacy, and anonymity - Leverage the image-to-image translation framework and identify applications to modalities beyond images - Implement Pix2Pix, a paired image-to-image translation GAN, to adapt satellite images into map routes (and vice versa) - Compare paired image-to-image translation to unpaired image-to-image translation and identify how their key difference necessitates different GAN architectures - Implement CycleGAN, an unpaired image-to-image translation model, to adapt horses to zebras (and vice versa) with two GANs in one The DeepLearning.AI Generative Adversarial Networks (GANs) Specialization provides an exciting introduction to image generation with GANs, charting a path from foundational concepts to advanced techniques through an easy-to-understand approach. It also covers social implications, including bias in ML and the ways to detect it, privacy preservation, and more. Build a comprehensive knowledge base and gain hands-on experience in GANs. Train your own model using PyTorch, use it to create images, and evaluate a variety of advanced GANs. This Specialization provides an accessible pathway for all levels of learners looking to break into the GANs space or apply GANs to their own projects, even without prior familiarity with advanced math and machine learning research.


Enroll today (teams & execs welcome): 

 

And sign-up for free access to ChatGPT.

 

Download your complimentary AI-ML-DL - Career Transformation Guide.

 

Much career success, Lawrence E. Wilson - Artificial Intelligence Academy (share with your team) 

Graphic source: TechBuild

Monday, January 9, 2023

Machine Learning in Trading and Finance

Colleagues, the Machine Learning in Trading and Finance program from the New York Institute of Finance and Google Cloud will equip you in Quantitative trading, pairs trading, and momentum trading. You will be able to design basic quantitative trading strategies, build machine learning models using Keras and TensorFlow, build a pair trading strategy prediction model and back test it, and build a momentum-based trading model and back test it. You should have advanced competency in Python programming and familiarity with pertinent libraries for machine learning, such as Scikit-Learn, StatsModels, and Pandas.By the end of the Specialization, you'll understand how to use the capabilities of Google Cloud to develop and deploy serverless, scalable, deep learning, and reinforcement learning models to create trading strategies that can update and train themselves. As a challenge, you're invited to apply the concepts of Reinforcement Learning to use cases in Trading.  This program is intended for those who have an understanding of the foundations of Machine Learning at an intermediate level. To successfully complete the exercises within the program, you should have advanced competency in Python programming and familiarity with pertinent libraries for Machine Learning, such as Scikit-Learn, StatsModels, and Pandas; a solid background in ML and statistics (including regression, classification, and basic statistical concepts) and basic knowledge of financial markets (equities, bonds, derivatives, market structure, and hedging). Experience with SQL is recommended.

Enroll today (teams & execs are welcome):  https://tinyurl.com/3zxdkb6m 

And download your free Finance, Accounting & Banking - Career Transformation Guide.

Much career success, Lawrence E. Wilson - Financial Certification Academy (share with your team)

Monday, January 2, 2023

Top 3 Machine Learning Training Programs for 2023

Colleagues, GlassDoor estimate the average US salary for Machine Learning Engineers at $130,794. Keep your ML skillset up-to-date and earn top dollar for your high demand skills. Here are our top 3 training recommendations for a competitive advantage in 2023. First, is the Machine Learning Engineer program from Udacity. Learn the data science and machine learning skills required to build and deploy machine learning models in production using Amazon SageMaker. The program offers an Introduction to Machine Learning, Developing Your First ML Workflow, Deep Learning Topics within Computer Vision and NLP, Operationalizing Machine Learning Projects on SageMaker and Capstone Project: Inventory Monitoring at Distribution Centers. Second is IBM’s Advanced Machine Learning and Signal Processing training. Access to valuable insights into Supervised and Unsupervised Machine Learning Models used by experts in many field relevant disciplines. We’ll learn about the fundamentals of Linear Algebra to understand how machine learning modes work. Then we introduce the most popular Machine Learning Frameworks for python: Scikit-Learn and SparkML. And third is the Machine Learning Engineering Career Track Program from Springboard. Deploy ML Algorithms and build your own portfolio. More than 50% of the Springboard curriculum is focused on production engineering skills. In this course, you'll design a machine learning/deep learning system, build a prototype and deploy a running application that can be accessed via API or web service.  

Enroll today (teams & execs welcome): 

Download your free AI-ML-DL - Career Transformation Guide.


Much career success, Lawrence E. Wilson - Artificial Intelligence Academy (share with your team) 

Graphic source: eLearning.com 


2023: Top 3 R Programming Courses for Career Growth

Colleagues, ZipRecruiter estimates the average US salary for an R Developer is $123,850. Here are our top 3 training programs for developers seeking career and income growth. First up is R Programming. Learn how to program in R and how to use R for effective data analysis. You will learn how to install and configure software necessary for a statistical programming environment and describe generic programming language concepts as they are implemented in a high-level statistical language. The course covers practical issues in statistical computing which includes programming in R, reading data into R, accessing R packages, writing R functions, debugging, profiling R code, and organizing and commenting R code. Next is Programming for Data Science in R. Master the  fundamentals required for a career in data science. By the end of the program, you will be able to use R, SQL, Command Line, and Git. Training modules with hands-on labs include: 1) IIntroduction to SQL - learn SQL fundamentals such as JOINs, Aggregations, and Subqueries. Learn how to use SQL to answer complex business problems (Project: Investigate a Database), 2) Introduction to R Programming - learn R programming fundamentals such as data structures, variables, loops, and functions. Learn to visualize data in the popular data visualization library ggplot2 (Project: Explore US Bikeshare Data), and 3) Introduction to Version Control - use version control and share your work with other people in the data science industry (Project: Post your work on Github). And third, Advanced R Programming. Gain skills in functional programming in R, robust error handling, object oriented programming, profiling and benchmarking, debugging, and proper design of functions. Upon completing this course you will be able to identify and abstract common data analysis tasks and to encapsulate them in user-facing functions. 

Enroll today (teams & exec are welcome):

Download your free Python, TensorFlow & PyTorch - Career Transformation Guide.


Much career success, Lawrence E. Wilson - Artificial Intelligence Academy (share with your team) 


Graphic source: Visually


Christmas Bonanza - Audible & Kindle Book Series (Amazon)

“Transformative Innovation” Audio and eBook series make a wonderful Christmas gift! Transformative Innovation series:   1 - ChatGPT, Gemini...