Pages

Monday, September 27, 2021

Advanced Computer Vision with TensorFlow

Colleagues, the Advanced Computer Vision with TensorFlow training program will enable you to explore image classification, image segmentation, object localization, and object detection. Apply transfer learning to object localization and detection, apply object detection models such as regional-CNN and ResNet-50, customize existing models, and build your own models to detect, localize, and label your own rubber duck images, implement image segmentation using variations of the fully convolutional network (FCN) including U-Net and d) Mask-RCNN to identify and detect numbers, pets, zombies, and more., and identify which parts of an image are being used by your model to make its predictions using class activation maps and saliency maps and apply these ML interpretation methods to inspect and improve the design of a famous network, AlexNet. Gain high-demand skills in Salience, Image Segmentation, Model Interpretability, Class Activation Maps and TensorFlow Object Detection API. Training modules that will help advance your career include: 1) Introduction to Computer Vision - overview of image classification, object localization, object detection, and image segmentation. Also be able to describe multi-label classification, and distinguish between semantic segmentation and instance segmentation. In the rest of this course, you will apply TensorFlow to build object detection and image segmentation models, 2) Object Detection - overview of some popular object detection models, such as regional-CNN and ResNet-50. You’ll use object detection models that you’ll retrieve from TensorFlow Hub, download your own models and configure them for training, and also build your own models for object detection. By using transfer learning, you will train a model to detect and localize rubber duckies using just five training examples, 3) Image Segmentation - using variations of the fully convolutional neural network, 4) Visualization and Interpretability - learn about the importance of model interpretability, which is the understanding of how your model arrives at its decisions and  implement class activation maps, saliency maps, and gradient-weighted class activation maps.

Enroll today (individuals & teams welcome): https://tinyurl.com/drm2pss 


Much career success, Lawrence E. Wilson - Artificial Intelligence Academy


Tuesday, September 21, 2021

Model Tuning for Machine Learning (Training)

Colleagues, the Model Tuning for Machine Learning training program will equip you to slingshot the predictive capabilities of your models, far out-pacing the limits of out-of-box ML. From a ground-up perspective, we'll understand how a model functions, the part of the model that is able to fit the data on its own, and how important additional tuning and fitting by a trained ML engineer is. This module includes real-world examples, coding assignments, and lots of in-depth exploration of how and why model tuning should be done. If you understand the material in this course, your models will improve, and the results you will be able to deliver will as well. The 32 training modules address: Introduction and expectation-setting, Hyperparameters, Intro to Bayesianism, Intro to Bayesian Model Averaging, Bayesian Model Averaging- Specification, Occam's Window, Computing the Integral, Bayesian Model Averaging-Worked Example, Intro to Bootstrap Aggregation, Intro to Bootstrap Aggregation- CART, Problem with Bagged Decision Trees, Random Forests- Start to Finish, Random Forests: Time-Accuracy Tradeoff, Boosted Trees- Differences from Random Forest, Boosted trees- Adaboost Procedure, XGBoost- Gradient Boosting, Boosted Trees- Final Decision, Introduction to Hyper-Parameters- Basics, Hyperparameters in Decision Trees, Hyperparamters in Decision Trees- Levels, Hyperparameters in decision trees- AUC, Finding optimal hyperparameters- Brute Force, Finding Optimal Hyperparameters- Sanity Check, Intro to Stacking, Intro to Stacking- Motivation, Stacking- Pedigree, Know Your Data, Time/Value Tradeoff, and Example Scenario - Network Transactions. 

Enroll today (individuals & teams welcome): https://tinyurl.com/kkesjbb4 


Much career success, Lawrence E. Wilson - Artificial Intelligence Academy


Thursday, September 16, 2021

Data Science: K-Means Clustering in Python (Training)

Colleagues, the Data Science: K-Means Clustering in Python program will equip you in mathematics, statistics and programming skills that are necessary for typical data analysis tasks. You will consider these fundamental concepts on an example data clustering task, and you will use this example to learn basic programming skills that are necessary for mastering Data Science techniques. During the course, you will be asked to do a series of mathematical and programming exercises and a small data clustering project for a given dataset. Define and explain the key concepts of data clustering, Demonstrate understanding of the key constructs and features of the Python language, Implement in Python the principle steps of the K-means algorithm while Designing and executing a whole data clustering workflow and interpret the outputs. Gain high-demand data science skills in K-Means Clustering, Machine Learning and Programming in Python. Training modules include: 1)  Foundations of Data Science: K-Means Clustering in Python, 2) Means and Deviations in Mathematics and Python, 3) Moving from One to Two Dimensional Data, 4) Introducing Pandas and Using K-Means to Analyse Data, and 5) A Data Clustering In-Class Project. 

Enroll today (individuals & teams welcome): https://tinyurl.com/2uuhjjr9 


Much career success, Lawrence E. Wilson - Artificial Intelligence Academy


Christmas Bonanza - Audible & Kindle Book Series (Amazon)

“Transformative Innovation” Audio and eBook series make a wonderful Christmas gift! Transformative Innovation series:   1 - ChatGPT, Gemini...