Pages

Tuesday, July 9, 2024

Deep Learning Specialization

AI colleagues, in the “Deep Learning Specialization from DeepLearning.AI you will master the fundamentals of deep learning and break into AI. Recently updated with cutting-edge techniques, would will gain highly marketable skills in Recurrent Neural Networks, Tensorflow, Convolutional Neural Networks, Artificial Neural Network and Transformers. You will build and train neural network architectures such as Convolutional Neural Networks, Recurrent Neural Networks, LSTMs, Transformers, and learn how to make them better with strategies such as Dropout, BatchNorm, Xavier/He initialization, and more. Get ready to master theoretical concepts and their industry applications using Python and TensorFlow and tackle real-world cases such as speech recognition, music synthesis, chatbots, machine translation, natural language processing, and more. In the Applied Learning Project you Build and train deep neural networks, implement vectorized neural networks, identify architecture parameters, and apply DL to your applications, Use best practices to train and develop test sets and analyze bias/variance for building DL applications, use standard NN techniques, apply optimization algorithms, and implement a neural network in TensorFlow, Use strategies for reducing errors in ML systems, understand complex ML settings, and apply end-to-end, transfer, and multi-task learning, Build a Convolutional Neural Network, apply it to visual detection and recognition tasks, use neural style transfer to generate art, and apply these algorithms to image, video, and other 2D/3D data, and Build and train Recurrent Neural Networks and its variants (GRUs, LSTMs), apply RNNs to character-level language modeling, work with NLP and Word Embeddings, and use HuggingFace tokenizers and transformers to perform Named Entity Recognition and Question Answering. Skill-based lessons address: 1) Neural Networks and Deep Learning, 2) Improving Deep Neural Networks: Hyperparameter Tuning, Regularization and Optimization, 3) Structuring Machine Learning Projects, 4) Convolutional Neural Networks, and 5) Sequence Models.

Enroll today (teams & execs welcome): https://imp.i384100.net/EK3BjP 


Download your free AI-ML-DL - Career Transformation Guide.


For your listening-reading pleasure:


1 - “AI Software Engineer: ChatGPT, Bard & Beyond” (Audible) or (Kindle)  


2 - “ChatGPT - The Era of Generative Conversational AI Has Begun” (Audible) or (Kindle


3 - “ChatGPT, Gemini and Llama - The Journey from AI to AGI, ASI and Singularity” (Audible) or (Kindle


Much career success, Lawrence E. Wilson - AI Academy (share with your team)



No comments:

Post a Comment

Advanced Learning Algorithms (training)

Colleagues, in the “ Advanced Learning Algorithms ” program you will build and train a neural network with TensorFlow to perform multi-clas...